МИНОБРНАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Механико-математический факультет

УТВЕРЖДАЮ

Руководитель ООП <u>Aducarf</u> А. В. Старченко <u>"31" ав гусию</u> 2016 г.

АННОТАЦИИ РАБОЧИХ ПРОГРАММ ДИСЦИПЛИН

Направление подготовки **01.03.03 Механика и математическое моделирование**

Профиль подготовки «Основы научно-исследовательской деятельности в области механики и математического моделирования»

Квалификация выпускника **Бакалавр**

Форма обучения Очная

СОДЕРЖАНИЕ

ДИСЦИПЛИНЫ (МОДУЛИ)	
БАЗОВАЯ ЧАСТЬ	
История	4
Философия	4
Иностранный язык	6
Безопасность жизнедеятельности	6
Математический анализ	7
Дифференциальные уравнения	8
Комплексный анализ	9
Алгебра	11
Аналитическая геометрия	12
Дифференциальная геометрия	12
Устойчивость и управление движением	13
Механика в современном естествознании	14
Планирование эксперимента	14
Лабораторные работы по теплообмену	15
Лабораторные работы по гидромеханике	16
Функциональный анализ	16
Теория вероятностей и математическая статистика	17
Физика	18
Уравнения математической физики	18
Лабораторный практикум	19
Компьютерные науки	20
Практикум на ЭВМ	21
Физическая культура	21
Экономика	23
Политология	24
Правоведение	24
Библиотековедение	25
Отраслевая библиография	26
Введение в специальность	27
Концепции современного естествознания	28
ВАРИАТИВНАЯ ЧАСТЬ	
Механика сплошных сред	28
Теоретическая механика	29
Теория случайных процессов	30
Вариационное исчисление и методы оптимизации	31
Математика. Адаптивный курс	32
Численные методы	33
КУРСЫ ПО ВЫБОРУ СТУДЕНТА	
Гидромеханика	34
Технологии программирования	34
Моделирование и прогноз катастроф	35
Современные вычислительные технологии	36
Разностные схемы	36
Теория упругости и пластичности	38
Конвективный теплоперенос	39
Численные методы МСС	39
Аэродинамика больших скоростей	40
Вариационный метол	41

Математические модели механики реагирующих сред	41
Теория сопротивления и теплопередачи	42
ПРАКТИКИ	
Учебно-вычислительная	42
Преддипломная	44
ЙТОГОВАЯ ГОСУДАРСТВЕННАЯ АТТЕСТАЦИЯ	
Подготовка и защита ВКР	45

Блок 1. Дисциплины (модули)

«История» (Б1.Б.1.)

В структуре ООП бакалавриата направления 01.03.03 дисциплина относится к базовой части. Эта дисциплина обязательна для изучения. Время изучения — 2-й семестр 1-го года обучения бакалавриата. Общая трудоёмкость дисциплины составляет 3 зачётных единицы, 108 часов, из которых 50 часов составляет контактная работа обучающегося с преподавателем, 58 часов составляет самостоятельная работа обучающегося. Форма промежуточной аттестации — зачёт.

Курс предполагает выполнение трёх письменных контрольных работ и работы студентов на практических занятиях.

Изучение дисциплины направлено на формирование следующих компетенций:

- (ОК-2) способностью анализировать основные этапы и закономерности исторического развития общества для формирования гражданской позиции;
- (ОК-5) способность к коммуникации в устной и письменной формах на русском и иностранном языках для решения задач межличностного и межкультурного взаимодействия.

При подготовке бакалавров дисциплина «История» знакомит студентов с историей Отечества, начиная с расселения восточных славян и образования государственности Руси вплоть до современного периода. Кроме того, затрагиваются и отдельные события из истории зарубежных стран. Изучаемый период включает события VI — начала XXI в. В ходе изучения предмета рассматриваются: оформление и развитие русской, российской и советской государственности, социально-экономические процессы, внешняя политика, отдельные аспекты истории культуры. Студенты учатся анализировать исторические факты и процессы, оценивать роль личностей в истории, аргументировано излагать собственную точку зрения на те или иные события, что в целом позволяет выработать способность анализировать основные этапы и закономерности исторического развития общества для формирования гражданской позиции.

«Философия» (Б1.Б.2)

Блок 1. Базовая часть, обязательная для изучения дисциплина.

Направление подготовки 01.03.03 «Механика и математическое моделирование»

Объем дисциплины в зачетных единицах: 2 ЗЕТ; общее количество часов – 72, из них аудиторных – 50 (34 часа – лекции, 16 часов – практические занятия), самостоятельной работы – 22 часа.

Отчетность: зачет в 6 семестре.

Цели освоения дисциплины. Курс «Философии» способствует формированию знаний в области философии, в нем излагаются вопросы, связанные со спецификой предмета, историей и структурой философии. Философия составляет ядро социогуманитарного научного блока. Философия рассматривается как фундаментальный курс, который закладывает основы мировоззрения, объясняет сложность и взаимозависимость всех процессов, протекающих в природе и обществе, в том числе и связанных с воздействием человека.

Задачи курса:

- 1) приобретение навыков чтения и анализа философских текстов (классических и современных);
- 2) умение вычленить и последовательно изложить основную идею, отраженную в том или ином философском тексте, а также воспроизвести авторскую аргументацию;
- 3) формирование навыков самостоятельного критического, исследовательского отношения к предъявляемой аргументации;

- 4) развитие способности понимания философских аспектов различных социально и личностно значимых проблем;
- 5) развитие и совершенствование способностей к диалогу, к дискуссии, к формированию и логически аргументированному обоснованию собственной позиции по тому или иному вопросу;

Изучение дисциплины направлено на формирование следующих компетенций:

- (ОК-1) способность использовать основы философских знаний для формирования мировоззренческой позиции.
- (ОК-5) способность к коммуникации в устной и письменной формах на русском и иностранном языках для решения задач межличностного и межкультурного взаимодействия

В результате освоения дисциплины в соответствии с ФГОС ВО обучающийся должен:

Знать: - историю становления, развития и функционирования философии в различных социокультурных образованиях и особенности философских, когнитивных практик;

- основные философские школы и направления, тенденции их развития, персоналии и решаемые проблемы;
 - современное состояние отечественной и зарубежной философии;

Уметь: - ориентироваться в поле философских проблем;

- -использовать в профессиональной деятельности категориально-методологический арсенал философии;
- проводить дискуссии по теме своей НИР и философски обоснованно защищать свою точку зрения;

Владеть: - навыками философско-методологической рефлексии интерпретации философских текстов;

- эвристическими приемами философского мышления при решении исследовательских задач;
- методиками подготовки философско-аналитических обзоров, эссе, рефератов, курсовых работ по философско-методологическим проблемам науки.
- методиками подготовки философско-аналитических обзоров, эссе, рефератов, курсовых работ по философско-методологическим проблемам науки.

При освоении курса слушателями предусматривается самостоятельная работа в Научной библиотеке ТГУ с учебниками, монографиями, статьями в периодических изданиях, освещающих проблемы философии и истории науки, в том числе, подготовленных преподавателями философского факультета. Рекомендуется использование Интернет источников и электронных изданий, в том числе электронного учебного пособия «Философия и история науки»

Краткая аннотация содержания дисциплины «Философия»:

Курс лекций, семинарских занятий и самостоятельной работы студентов по философии предполагает усиление И достройку философской составляющей мировоззрения, особенно его критически-методологическую основу. Курс содержит три основных части: метафилософия, история философии, актуальные проблемы современной метафилософии задаются основные свойства и составляющие мировоззрения и философии и роль последней в его формировании. В части «История философии» даётся генезис основных проблем и категорий, определяющих мировоззрение определённой эпохи и этносов. В третьей части «Актуальные проблемы современной философии» излагается интегральное видение основных проблем философии: онтологии, гносеологии, аксиологии, праксиологии с выходом на пространство философской антропологии, социальной философии и глобальных проблем современности.

«Иностранный язык» (Б1.Б.3)

1. Место дисциплины в структуре ООП бакалавра: Данная дисциплина относится к базовой части ООП и является обязательной для изучения всеми студентами, обучающимися по направлению подготовки 01.03.03 «Механика и математическое моделирование».

Изучение дисциплины направлено на формирование следующих компетенций:

(ОК-5) - способность к коммуникации в устной и письменной формах на русском и иностранном языках для решения задач межличностного и межкультурного взаимодействия

2. Год/годы и семестр/семестры обучения:

Дисциплина изучается на первом и втором курсах с 1 по 4 семестр.

3. Входные требования для освоения дисциплины:

Для изучения дисциплины необходимы компетенции, сформированные в результате обучения в средней общеобразовательной школе. Организация обучения дисциплине предполагает обязательное проведение тестирования, охватывающего все виды деятельности (по типу Oxford Placement Test). По результатам тестирования формируются две подгруппы: начинающая и продолжающая.

4. Общая трудоемкость дисциплины составляет <u>14</u> зачетных единиц, <u>504</u> часа, из которых <u>244</u> часа составляет контактная работа обучающегося с преподавателем <u>224</u> часа составляет самостоятельная работа обучающегося и 36 часов отводится на подготовку к экзамену.

5. Формат обучения:

Программа рассчитана на очное взаимодействие с преподавателем 2 раза в неделю по 2 академических часа в форме практических занятий в первом и втором семестре на первом курсе.

В третьем семестре с 1 по 9 неделю 2 встречи по 2 академических часа и с 9 по 17 неделю 1 встреча по 2 часа.

В четвёртом семестре с 1 по 9 неделю 1 встреча по 2 академических часа и с 9 по 17 неделю по 2 встречи по 2 академических часа.

6. Форма промежуточной аттестации

Дисциплина предполагает текущий, промежуточный контроль. Текущий контроль уровня сформированности умений и навыков по английскому языку осуществляется по всем видам речевой деятельности (чтение, аудирование, письмо, говорение). Промежуточный контроль включают в себя лексико-грамматический тест, письменный перевод текста со словарем, устное коммуникативное задание на составление диалогов и монологических высказываний с использованием изученной лексики и формул речевого общения, реферирование.

7. Значение дисциплины для подготовки бакалавра

Освоение данной дисциплины даёт возможность научить студентов свободно говорить на английском языке, выступать с научными докладами и сообщениями, позволяет привить студентам навык самостоятельного чтения литературы по специальности, расширить кругозор студентов, научить сравнивать различные явления культурной, общественной, политической и т.д. жизни народов стран изучаемого языка и россиян, логически верно, аргументировано и ясно строить устную и письменную речь на русском и иностранном языках в бытовой и профессиональной сферах межличностного и межкультурного взаимодействия.

«Безопасность жизнедеятельности» (Б1.Б.4)

Дисциплина «Безопасность жизнедеятельности» является компонентом базовой части ООП по направлению 01.03.03 «Механика и математическое моделирование».

Дисциплина реализуется на механико-математическом факультете.

Дисциплина нацелена на формирование общекультурных компетенций выпускника:

• способность использовать приемы первой помощи, методы защиты в условиях чрезвычайных ситуаций (ОК-9).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний о математическом анализе, понятия, идеи и методы теории пределов и рядов, непрерывных, дифференцируемых и интегрируемых конечномерных отображений и их место и роль в математическом знании.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: *лекции*, *практики*, *самостоятельная работа студента*.

Программой дисциплины предусмотрены следующие виды контроля:

- Реферат. Реферат подается в письменном виде
- итоговый контроль в форме Теста № 1 ЭУК «Основы безопасности жизнедеятельности», зачет

Общая трудоемкость освоения дисциплины составляет 2 зачетные единицы, 72 часа, из которых 18 часов составляет контактная работа обучающегося с преподавателем (18 часов — занятия лекционного типа) 54 часа составляет самостоятельная работа обучающегося.

«Математический анализ» (Б1.Б.5)

Дисциплина «Математический анализ» является компонентом базовой части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете.

Дисциплина нацелена на формирование общепрофессиональных и профессиональных компетенций выпускника:

- Готовность использовать фундаментальные знания в области теоретической и прикладной механики, механики сплошной среды, математического анализа, комплексного и функционального анализа, алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности (ОПК-2);
- Способность к определению общих форм и закономерностей отдельной предметной области (ПК-1);
- Способность математически корректно ставить естественнонаучные задачи, знание постановок классических задач математики и механики (ПК-2);
- Способность строго доказать утверждение, сформулировать результат, увидеть следствия полученного результата (ПК-3).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний о математическом анализе, понятия, идеи и методы теории пределов и рядов, непрерывных, дифференцируемых и интегрируемых конечномерных отображений и их место и роль в математическом знании.

Преподавание дисциплины предусматривает следующие формы организации

учебного процесса: лекции, практики, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля:

- промежуточный контроль в форме зачетов в 1 и 2 семестре и экзамены в 1, 2 и 3 семестре;
- итоговый контроль в форме экзамена в 4 семестре.

Общая трудоемкость освоения дисциплины составляет 32 зачетных единицы, 1152 часа, из которых 560 часов составляет контактная работа обучающегося с преподавателем (280 часов – занятия лекционного типа, 280 часов – занятия практического типа), 592 часа составляет самостоятельная работа обучающегося.

«Дифференциальные уравнения» (Б1.Б.6)

1. Цель освоения дисциплины

Целью освоения дисциплины «Дифференциальные уравнения» является:

- 1) фундаментальная подготовка в области дифференциальных уравнений;
- 2) овладение методами решения основных типов дифференциальных уравнений и их систем:
- 3) овладение современным математическим аппаратом для дальнейшего использования в приложениях.

2. Место дисциплины в структуре ООП бакалавриата

Дисциплина «Дифференциальные уравнения» входит в базовую часть ООП по направлению подготовки: 01.03.03 «Механика и математическое моделирование». Для ее успешного изучения необходимы знания и умения, приобретенные в результате освоения предшествующих дисциплин:

математический анализ (теория пределов, ряды, дифференцирование, интеграл Римана);

высшая алгебра (алгебраические системы уравнений, матрицы и детерминанты);

аналитическая геометрия (кривые и поверхности второго порядка, параметризация).

Освоение дисциплины «Дифференциальные уравнения» необходимо при последующем изучении дисциплин:

уравнения в частных производных;

теория функций комплексного переменного;

функциональный анализ;

вычислительная математика;

теоретическая механика;

механика сплошных сред.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Готовность использовать фундаментальные знания в области теоретической и прикладной механики, механики сплошной среды, математического анализа, комплексного и функционального анализа, алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности (ОПК-2).

Способность к определению общих форм и закономерностей отдельной предметной области (ПК-1).

Способность математически корректно ставить естественнонаучные задачи, знание постановок классических задач математики и механики (ПК-2).

Способность строго доказать утверждение, сформулировать результат, увидеть

следствия полученного результата (ПК-3).

В результате освоения дисциплины обучающийся должен:

иметь представление о месте и роли изучаемой дисциплины среди других наук; знать основные положения теоретических разделов курса, их прикладное значение; уметь применять полученные знания для решения математических задач;

владеть навыками применения основных теорем и методов теории дифференциальных уравнений.

4. Содержание дисциплины

Общая трудоемкость дисциплины составляет 7 зачетных единиц (252 часа).

4.1. Наименования разделов дисциплины (модуля)

- Дифференциальные уравнения первого порядка
- Общая теория уравнений
- Дифференциальные уравнения высших порядков
- Общая теория линейных систем и уравнений
- Некоторые вопросы теории уравнений второго порядка
- Линейные системы с постоянными коэффициентами
- Устойчивость по Ляпунову и асимптотическая устойчивость
- Фазовая плоскость
- Линейные и квазилинейные уравнения с частными производными первого порядка.

4.2. Виды учебной работы и формы аттестации

Лекции – 70 часов.

Практические занятия – 70 часов.

Самостоятельная работа – 112 часов.

Формы промежуточной аттестации – зачет в 3 семестре, экзамен в 4 семестре.

«Комплексный анализ» (Б1.Б.7)

1. Цель освоения дисциплины

Целью освоения дисциплины «Комплексный анализ» является овладение основными понятиями и методами комплексного анализа.

2. Место дисциплины в структуре ООП бакалавриата

Для изучения данной дисциплины требуется знание элементарной математики в объеме школьной программы, а также некоторых разделов математического анализа, алгебры, геометрии, топологии, дифференциальных уравнений.

Знания, полученные при изучении этой дисциплины, используются практически во всех дисциплинах математического и естественнонаучного, а также профессионального циклов.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля)

Готовность использовать фундаментальные знания в области теоретической и прикладной механики, механики сплошной среды, математического анализа, комплексного и функционального анализа, алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности (ОПК-2).

Способность к определению общих форм и закономерностей отдельной предметной области (ПК-1).

Способность математически корректно ставить естественнонаучные задачи, знание

постановок классических задач математики и механики (ПК-2).

Способность строго доказать утверждение, сформулировать результат, увидеть следствия полученного результата (ПК-3).

В результате освоения дисциплины обучающийся должен:

Знать:

- основные определения и основные свойства голоморфных отображений, а также формулировки наиболее важных утверждений, некоторые стандартные методы их доказательств;
- приложение теории функции комплексного переменного к решению задач, в том числе прикладных;
 - классические задачи комплексного анализа;
 - поле комплексных чисел;
- голоморфные и конформные отображения;
- основные элементарные отображения;
- теорию интегрирования функции комплексного переменного;
- вычеты;
- ряд Лорана и Тейлора;

Уметь:

-решать задачи вычислительного и теоретического характера в области комплексного анализа, устанавливать взаимосвязи между вводимыми понятиям, доказывать как известные утверждения, так и родственные им новые;

- находить образы и прообразы относительно отображения,
- интегрировать отображения,
- разлагать отображения в ряды Тейлора и Лорана,
- применять теорию вычетов к вычислению некоторых определенных интегралов;

Владеть:

- основными средствами комплексного анализа;
- навыками применения некоторых разделов комплексного анализа к решению конкретных задач, возникающих на практике.

4. Содержание дисциплины

Общая трудоемкость дисциплины составляет 6 зачетных единиц, 216 часов.

4.1. Наименования разделов дисциплины (модуля)

- Множество комплексных чисел.
- Топология комплексной и замкнутой комплексной плоскости.
- Интегрирование комплексных отображений.
- Интегральная теорема Коши. Формула Коши.
- Ряды Тейлора и Лорана.
- Вычеты, их применение.
- Элементы теории конформных отображений.
- Гармонические отображения и их применения.

4.2. Виды учебной работы и формы аттестации

Лекции – 54 часа.

Практические занятия – 36 часов.

Самостоятельная работа – 126 часов.

Формы промежуточной аттестации – экзамен.

«Алгебра» (Б1.Б.8)

Дисциплина «Алгебра» является компонентом базовой части физикоматематического цикла дисциплин, реализуемых на механико-математическом факультете, для подготовки студентов по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина преподается сотрудниками кафедры алгебры во время 1-го года обучения (1-й и 2-й семестры).

Дисциплина нацелена на формирование общепрофессиональных и профессиональных компетенций выпускника:

- готовность использовать фундаментальные знания в области теоретической и прикладной механики, механики сплошной среды, математического анализа, комплексного и функционального анализа, алгебры, геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности (ОПК-2);
- способность к определению общих форм и закономерностей отдельной предметной области (ПК-1);
- способность строго доказать утверждение, сформулировать результат, увидеть следствие полученного результата (ПК-3).

Для формирования этих компетенций в курсе преподаются базовые основы линейной и общей алгебры, позволяющие применять алгебраические методы решения теоретических и практических задач, а также способствующие формированию умения конкретные физические задачи облекать в абстрактную математическую форму.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, лабораторные работы, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости в форме теоретических ответов, а также решения задач студентами у доски;
- текущий контроль успеваемости в форме научного доклада (тема выступления индивидуально выбирается в соответствии с тематикой ВКР каждого студента);
- контрольные работы продолжительностью 1 или 2 часа (3-4 к/р в семестр);
- электронный учебный курс (ЭУК) «Алгебра (порождающие множества групп)», курс предназначен для обеспечения самостоятельной работы студентов и предусматривает оценку теоретических знаний, а также умения решения задач;
- экзамены в 1-м и во 2-м семестрах.

Общая трудоемкость освоения дисциплины

1-й семестр 6 зачетных единиц, 216 часов, из которых 72 часа составляет контактная работа обучающегося с преподавателем (36 часов — занятия лекционного типа, 36 часов — лабораторные занятия), 108 часов составляет самостоятельная работа обучающегося и 36 часов контроль.

2-й семестр 5 зачетных единиц, 180 часов, из которых 68 часов составляет контактная работа обучающегося с преподавателем (34 часа — занятия лекционного типа, 34 часа — лабораторные занятия), 76 часов составляет самостоятельная работа обучающегося и 36 часов контроль.

«Аналитическая геометрия» (Б1.Б.9)

Дисциплина «Аналитическая геометрия» является компонентом базовой части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой геометрии.

Дисциплина нацелена на формирование общепрофессиональных и профессиональных компетенций выпускника:

- готовность использовать фундаментальные знания в области теоретической и прикладной механики, механики сплошной среды, математического анализа, комплексного и функционального анализа, алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности (ОПК-2);
- способность к определению общих форм и закономерностей отдельной предметной области (ПК-1);
- способность строго доказать утверждение, сформулировать результат, увидеть следствие полученного результата (ПК-3).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний о способах постановки классических задач геометрии, об основных фактах общей теории кривых и теории поверхностей первого и второго порядков.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости в форме решения задач у доски на практических занятий, решения домашних заданий, а также выполнения индивидуальных контрольных работ в аудитории.
- промежуточный контроль в форме экзамена в 2 семестре

Общая трудоемкость освоения дисциплины составляет 6 зачетных единиц, 216 часов, а из которых 100 часов составляет контактная работа обучающегося с преподавателем (50 часов – занятия лекционного типа, 50 часов – занятия семинарского типа), 116 часов составляет самостоятельная работа обучающегося.

«Дифференциальная геометрия» (Б1.Б.10)

Дисциплина «Дифференциальная геометрия» является компонентом базовой части физико-математического цикла дисциплин для подготовки студентов по направлению 01.03.03 Механика и математическое моделирование. Дисциплина реализуется на механико-математическом факультете кафедрой геометрии.

Дисциплина нацелена на формирование общепрофессиональных и профессиональных компетенций выпускника:

готовность использовать фундаментальные знания в области теоретической и прикладной механики, механики сплошной среды, математического анализа, комплексного и функционального анализа, алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности (ОПК-2);

- способность к определению общих форм и закономерностей отдельной предметной области (ПК-1);
- способность строго доказать утверждение, сформулировать результат, увидеть следствие полученного результата (ПК-3).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний о способах постановки классических задач геометрии, об основных фактах общей теории кривых и теории поверхностей.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента, консультации.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости в форме выполнения индивидуального задания по дисциплине;
- промежуточный контроль в форме экзамена в 3 семестре.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единиц, 144 часа из которых 54 часа составляет контактная работа обучающегося с преподавателем (36 часов — занятия лекционного типа, 18 часов — занятия семинарского типа), 54 часа составляет самостоятельная работа обучающегося.

«Устойчивость и управление движением» (Б1.Б.11)

Дисциплина «Устойчивость и управление движением» является компонентом базовой части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой теоретической механики.

Дисциплина нацелена на формирование общепрофессиональных и профессиональных компетенций выпускника:

- готовность использовать фундаментальные знания в области теоретической и прикладной механики, механики сплошной среды, математического анализа, комплексного и функционального анализа, алгебры, геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности (ОПК-2);
- способность математически корректно ставить естественнонаучные задачи, знание классических постановок математики и механики (ПК-2);
- способность строго доказать утверждение, сформулировать результат, увидеть следствие полученного результата (ПК-3).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний о проблеме устойчивости, её отношению к механике, термодинамике и химически реагирующим средам. Кроме того рассматриваются вопросы связанные с управлением движением и механикой турбулентных потоков.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: *лекции, самостоятельная работа студента*.

Программой дисциплины предусмотрены следующие виды контроля:

• текущий контроль успеваемости в форме научного доклада (тема выступления

индивидуально выбирается в соответствии с тематикой ВКР каждого студента);

• промежуточный контроль в форме зачета в 7 семестре и экзамена в 8 семестре.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 часов, из которых 108 часов составляет контактная работа обучающегося с преподавателем (108 часов — занятия лекционного типа), 72 часа составляет самостоятельная работа обучающегося.

«Механика в современном естествознании» (Б1.Б.12)

Дисциплина «Механика в современном естествознании» является компонентом базовой части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой физической и вычислительной механики.

Дисциплина нацелена на формирование общепрофессиональных и профессиональных компетенций выпускника:

способностью математически корректно ставить естественнонаучные задачи, знание постановок классических задач математики и механики (ПК-2).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний об основных принципах формирования законов природы, закономерностях в поведении сложных систем, вопросах термодинамики равновесных и неравновесных процессах. Кроме того рассматриваются вопросы связанные с методами математического моделирования в процессе научного познания реальных процессов, возникающих при исследовании атмосферы Земли.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, самостоятельная работа студента, консультации.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости в форме научного доклада (тема выступления индивидуально выбирается в соответствии со списком рефератов по теме дисциплины);
- промежуточный контроль в форме зачета в 8 семестре.

Общая трудоемкость освоения дисциплины составляет 2 зачетных единицы, 72 часа, из которых 54 часов составляет контактная работа обучающегося с преподавателем (54 часов — занятия лекционного типа) 18 часов составляет самостоятельная работа обучающегося.

«Планирование эксперимента» (Б1.Б.13)

Дисциплина «Планирование эксперимента» является компонентом базовой части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой физической ивычислительной механики.

Дисциплина нацелена на формирование профессиональных компетенций выпускника:

- способность математически корректно ставить естественнонаучные задачи, знание постановок классических задач математики и механики (ПК-2);
- способность строго доказать утверждение, сформулировать результат, увидеть следствия

полученного результата (ПК-3);

• готовность использовать основы теории эксперимента в механике, понимание роли эксперимента в математическом моделировании процессов и явлений реального мира (ПК-4).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний о теории планирования экстремальных экспериментов и их отношении к механике, термодинамике и химически реагирующим средам. Кроме того рассматриваются вопросы связанные со статистическими методами анализа и обработки результатов наблюдений.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекиии, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости в форме проверочной работы;
- промежуточный контроль в форме зачета в 7 семестре.

Общая трудоемкость освоения дисциплины составляет 2 зачетные единицы, 72 часа, из которых 36 часов составляет контактная работа обучающегося с преподавателем (36 часов – занятия лекционного типа,) 36 часов составляет самостоятельная работа обучающегося.

«Лабораторные работы по теплообмену» (Б1.Б.14)

Дисциплина «Лабораторные работы по теплообмену» является компонентом базовой части ООП по направлению 01.03.03 «Механика и математическое моделирование», обязательна для обучения. Дисциплина реализуется на механикоматематическом факультете кафедрой физической и вычислительной механики.

Дисциплина нацелена на формирование профессиональных компетенций выпускника:

- способность к определению общих форм и закономерностей отдельной предметной области (ПК-1);
- готовностью использовать основы теории эксперимента в механике, понимание роли эксперимента в математическом моделировании процессов и явлений реального мира (ПК-4).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов практических знаний о процессах теплопереноса, законах термодинамики, изменении термодинамических параметров и теплофизических характеристик различных сред.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лабораторные работы, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля:

- контроль освоения материала в виде проверки письменных отчетов о проведении лабораторных работ;
- итоговый контроль успеваемости в форме зачета в шестом семестре.

Общая трудоемкость освоения дисциплины составляет 2 зачетные единицы, 72 часа из которых 50 часов составляет контактная работа обучающегося с преподавателем (50 часов – лабораторные занятия), 22 часа составляет самостоятельная работа обучающегося.

«Лабораторные работы по гидромеханике» (Б1.Б.15)

Дисциплина «Лабораторные работы по гидромеханике» является компонентом базовой части ООП по направлению 01.03.03 «Механика и математическое моделирование», обязательна для обучения. Дисциплина реализуется на механикоматематическом факультете кафедрой физической и вычислительной механики.

Дисциплина нацелена на формирование профессиональных компетенций выпускника:

- способность к определению общих форм и закономерностей отдельной предметной области (ПК-1);
- готовностью использовать основы теории эксперимента в механике, понимание роли эксперимента в математическом моделировании процессов и явлений реального мира (ПК-4).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов практических знаний о течениях газа, ламинарном течении, течении в пограничном слое, при обтекании цилиндра, крыла и т.д. с приобретением практических навыков измерения гидродинамических параметров.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лабораторные работы, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля:

- контроль освоения материала в виде проверки письменных отчетов о проведении лабораторных работ;
- итоговый контроль успеваемости в форме зачета в седьмом семестре.

Общая трудоемкость освоения дисциплины составляет 2 зачетные единицы, 72 часа, из которых 54 часа составляет контактная работа обучающегося с преподавателем (50 часов — лабораторные занятия), 18 часов составляет самостоятельная работа обучающегося.

«Функциональный анализ» (Б1.Б.16)

Дисциплина «Функциональный анализ» представляет собой дисциплину базовой части учебного плана подготовки студентов по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой теории функций.

Дисциплина нацелена на формирование общепрофессиональных и профессиональных компетенций выпускника:

- Готовность использовать фундаментальные знания в области теоретической и прикладной математики, механики сплошной среды, математического анализа, комплексного и функционального анализа, алгебры, геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности (ОПК-2);
- способностью к определению общих форм и закономерностей отдельной предметной области (ПК-1);
- Способность строго доказать утверждение, сформировать результат, увидеть следствие полученного результата (ПК-3).

Целью освоения дисциплины является

• освоение языка функционального анализа, который широко используется в математике, физике и в прикладных науках как удобный инструмент исследования конкретных задач;

• уяснить прикладную роль функционального анализа, которая сводится к обоснованию численных методов решения уравнений.

Содержание дисциплины:

- Определения и основные свойства нормированных, банаховых пространств;
- Определения, свойства и примеры линейных ограниченных операторов, функционалов, вполне непрерывных и конечномерных операторов;
- Гильбертовы пространства, теорема о наилучшем приближении и теорема о проекции;
 - Ряды Фурье в гильбертовых пространствах;
 - Примеры ортонормированных систем и базисов в гильбертовых пространствах;
 - Спектры линейных ограниченных операторов в банаховых пространствах;
- Спектры самосопряженных и вполне непрерывных операторов в гильбертовых пространствах;
 - Уравнение Рисса-Шаудера и теорема Гильберта-Шмидта;
 - Принцип сжимающих отображений.

Общая трудоемкость дисциплины составляет 6 зачетных единиц, 216 часов.

Виды учебной работы:

Лекции – 54 часа.

Практические занятия –36 часов.

Самостоятельная работа – 126 часов.

Форма аттестации – экзамен.

Программой дисциплины предусмотрены следующие виды контроля:

- Текущий контроль успеваемости в виде проверки выполнения индивидуальных заданий по содержанию дисциплины;
 - Экзамен в 5 семестре.

«Теория вероятностей и математическая статистика» (Б1.Б.17)

- **1. Цель освоения** дисциплины: фундаментальная подготовка и формирование прочных теоретических знаний и практических навыков по использованию методов теории вероятностей и математической статистики для решения конкретных научных и практических задач.
 - 2. Место дисциплины в структуре ООП бакалавриата

Относится к базовой части ООП, обязательна для изучения.

3. Год/годы и семестр/семестры обучения

4-й год обучения, 1(7) семестр.

4. Входные требования для освоения дисциплины, предварительные условия.

Для изучения курса необходимо освоить знания, умения и навыки, формируемые при изучении дисциплин «Математический анализ», «Аналитическая геометрия», «Алгебра», «Компьютерные науки» и «Функциональный анализ».

5. Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов, из которых 90 часов составляет контактная работа обучающегося с преподавателем 54 часа — занятия лекционного типа, 36 часов — практические занятия, 18 часов составляет самостоятельная работа обучающегося.

6. Формат обучения

Очный

7. Содержание дисциплины

- Вероятность событий
- Случайные величины
- Последовательности случайных величин
- Параметрическое оценивание
- Проверка статистических гипотез
- Регрессионные модели

«Физика» (Б1.Б.18)

Дисциплина «Физика» является компонентом базовой части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете.

Дисциплина нацелена на формирование профессиональных компетенций выпускника:

• способность к определению общих форм и закономерностей отдельной предметной области (ПК-1).

Содержание дисциплины охватывает круг вопросов, связанных с понятиями: материальная точка, радиус-вектор, скорость, ускорение, сила, момент инерции, момент силы, импульс, момент импульса, а так же основные законы механики (законы Ньютона, законы сохранения и т.д.). Кроме того рассматриваются основы электродинамики: основные законы и понятия, и их применение для идентификации материалов и их классификации (например, понимать разницу между парамегнетиками, диамагнетиками и феромагнетиками).

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости в форме контрольных работ;
- промежуточный контроль в форме зачета в 7 семестре.

Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы, 108 часов, из которых 72 часа составляет контактная работа обучающегося с преподавателем (36 часов — занятия лекционного типа, 36 часов — практические занятия), 36 часов составляет самостоятельная работа обучающегося.

«Уравнения математической физики» (Б1.Б.19)

1. Цель освоения дисциплины

Целью освоения дисциплины «Уравнения математической физики» является овладение основными методами постановки и решения основных типов задач математической физики.

2. Место дисциплины в структуре ООП бакалавриата

Для изучения данной дисциплины требуется знание основ дифференциального и интегрального исчисления, теории и практики обыкновенных дифференциальных уравнений, ряда фактов комплексного анализа, функционального анализа, общей топологии.

Знания, полученные при изучении этой дисциплины, используются в профессиональной деятельности при построении математических моделей ряда природных и технологических процессов и явлений.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Формируемые компетенции: ОПК-2; ПК-3

Готовность использовать фундаментальные знания в области теоретической и прикладной механики, механики сплошной среды, математического анализа, комплексного и функционального анализа, алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности (ОПК-2);

Способность строго доказать утверждение, сформулировать результат, увидеть следствия полученного результата (ПК-3).

В результате освоения дисциплины обучающийся должен:

Знать:

основные методы постановки и решения основных типов задач математической физики, математическое обоснование этих методов.

Уметь:

- формулировать типовые задачи математической физики,
- применять основные методы решения задач математической физики.

Владеть:

- умением формулировать и решать основные типы задач математической физики.

4. Содержание дисциплины

Общая трудоемкость дисциплины составляет 7 зачетных единиц, 252 часа.

4.1. Наименования разделов дисциплины (модуля)

- Постановка основных краевых задач математической физики.
- Приведение квазилинейных уравнений второго порядка к каноническому виду.
- Метод Даламбера.
- Задача Штурма Лиувилля и метод Фурье.
- Основные функции и обобщённые функции.
- Прямое произведение и свёртка обобщённых функций.
- Преобразование Фурье и Лапласа обобщённых функций.
- Фундаментальные решения дифференциальных операторов.
- Обобщённая задача Коши.
- Стационарные краевые задачи.
- Пространства Соболева и разрешимость стационарных краевых задач.

4.2. Виды учебной работы и формы аттестации

Лекции – 70 часов.

Практические занятия – 70 часов.

Самостоятельная работа – 112 часов.

Формы промежуточной аттестации – зачёт (5-й семестр), экзамен (6-й семестр).

«Лабораторный практикум» (Б1.Б.20)

Дисциплина «Лабораторный практикум» является компонентом базовой части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой теоретической механики.

Дисциплина нацелена на формирование следующей профессиональной компетенции выпускника:

• готовность использовать основы численного эксперимента в механике жидкости и газа,

понимание роли численного эксперимента в математическом моделировании процессов теплопереноса и динамики жидкости (ПК-4).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов практических навыков по созданию вычислительных технологий для решения задач теплопроводности и динамики жидкости, их реализации в компьютерных программах и проведении расчётов.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лабораторные занятия, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости в форме проверки результатов расчётов, полученных с помощью компьютерных программ, написанных студентами;
- промежуточный контроль в форме зачета в 8 семестре.

Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа, из которых 54 часа составляет контактная работа обучающегося с преподавателем (54 часа – лабораторные работы), 18 часов составляет самостоятельная работа обучающегося.

«Компьютерные науки» (Б1.Б.21)

Дисциплина «Компьютерные науки» входит в базовую часть учебного плана основной образовательной программы подготовки бакалавров по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механикоматематическом факультете кафедрой вычислительной математики и компьютерного моделирования.

Дисциплина нацелена на формирование профессиональной компетенции выпускника:

- ОПК-2: готовность использовать фундаментальные знания в области теоретической и прикладной механики, механики сплошной среды, математического анализа, комплексного и функционального анализа, алгебры, геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности;
- ОПК-4: способность находить, анализировать, реализовывать программно и использовать на практике математические алгоритмы и структуры информационных ресурсов, в том числе с применением современных вычислительных систем;
- ПК-2: способность математически корректно ставить естественно научные задачи, знание постановок классических задач математики.

Цель освоения дисциплины: обучение теоретическим основам компьютерных наук и получение практических навыков программирования для целостного представления об информатике как науке, ее месте в современном мире и системе наук

Содержание дисциплины:

Введение в предмет.

Архитектура ЭВМ.

Алгоритм и его свойства.

Алгоритмический язык.

Структурное программирование.

Простейшие алгоритмы обработки данных.

Структуры данных.

Рекурсивные и итерационные алгоритмы.

Понятие разделяемого ресурса ЭВМ. Операционная система.

Компиляция и интерпретация.

Надежность программного обеспечения.

Элементы машинной графики.

Глобальная сеть, её информационные ресурсы и их структурирование.

Общие принципы объектно-ориентированного программирования.

Введение в параллельное программирование.

Базы данных.

Общая трудоемкость дисциплины 16 зачетных единиц (1 семестр -5, 2 семестр - 6, 3 семестр - 5), 576 часов, из которых 228 часов составляет контактная работа обучающегося с преподавателем (124 часа — занятия лекционного типа, 104 часа — практические занятия), 276 часов составляет самостоятельная работа обучающегося и 72 контроль знаний.

«Практикум на ЭВМ» (Б1.Б.22)

Дисциплина «Практикум на ЭВМ» является компонентом базовой части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой теоретической механики.

Дисциплина нацелена на формирование профессиональных компетенций выпускника:

• готовность использовать основы теории эксперимента в механике, понимание роли эксперимента в математическом моделировании процессов и явлений реального мира (ПК-4).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний о математических методах визуализации движения твердых недеформируемых тел, а также течения идеальной жидкости. Кроме того рассматриваются вопросы, связанные с умением использовать математический аппарат для описания транспортных процессов в природе и технике

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лабораторные занятия, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля:

• зачет, который предусматривает защиту трех отчетов по всем лабораторным работам.

Общая трудоемкость освоения дисциплины составляет 2 зачетные единицы, 72 часа, из которых 36 часов составляет контактная работа обучающегося с преподавателем и 36 часов составляет самостоятельная работа обучающегося.

«Физическая культура» «Б1.Б.23»

Дисциплина «Физическая культура» входит в базовую часть ООП по направлению подготовки: 01.03.03 «Механика и математическое моделирование».

Квалификация выпускника: бакалавр.

Форма обучения: очная.

Год/годы и семестр/семестры обучения: 1-6-й семестры, 3-и года обучения.

Место дисциплины в структуре ООП бакалавриата

«Физическая культура» является дисциплиной, отнесенной к базовой части Блока 1 «Дисциплины (модули)» программы бакалавриата. Планирование учебного процесса по

физической культуре в НИ ТГУ осуществляется в соответствии с требованиями, установленными ФГОС ВО и Порядком организации и осуществления образовательной деятельности по образовательным программам высшего образования - программам бакалавриата, программам специалитета. Для проведения практических занятий по физической культуре (физической подготовке) формируются учебные группы численностью не более 15 человек с учетом пола, состояния здоровья, физического развития и физической подготовленности обучающихся.

Общая трудоемкость дисциплины составляет 2 зачетные единицы (72 часа). Элективные дисциплины по физической культуре в объеме не менее 328 академических часов (если иное не предусмотрено стандартом) входят в состав вариативной части Блока 1. Академические часы по элективным дисциплинам являются обязательными для освоения и в зачетные единицы не переводятся. Распределение академических часов происходит в рамках 6 учебных семестров. 72 часа в базовой части ООП распределяются между следующими видами учебных занятий:

Лекционный курс - 20 часов (1 и 6 семестр). Лекционный материал формирует у обучающихся систему научно-практических знаний и ценностное отношение к физической культуре. Эти знания необходимы для понимания социальной роли физической культуры и спорта в развитии личности в современных условиях жизнедеятельности и приобретение обучающимися современных научных знаний, научно-биологических и практических основ физической культуры, спорта и здорового образа жизни.

- *Методико-практические занятия* -16 часов (групповые занятия в 1 и 6 семестрах). Содержание методико-практических занятий направлено на изучение методик самооценки состояния здоровья, физического развития, работоспособности и применения средств физической культуры для их направленной коррекции.
- *Самостоятельная работа обучающихся* 36 часов распределяется равными частями (по 18 часов) в 1 и 6 семестрах. Самостоятельная работа обучающихся направлена на освоение ими лекционного материала, подготовку к теоретическому тестированию.

Цель дисциплины: Целью физического воспитания студентов является формирование физической культуры личности и способности направленного использования разнообразных средств физической культуры, спорта и туризма для сохранения и укрепления здоровья, психофизической подготовки и самоподготовки к будущей жизни и профессиональной деятельности.

Задачи дисциплины:

- понимание социальной значимости физической культуры и её роли в развитии личности и подготовке к профессиональной деятельности;
- знание научно-биологических, педагогических и практических основ физической культуры и здорового образа жизни;
- формирование мотивационно-ценностного отношения к физической культуре, установки на здоровый стиль жизни, физическое совершенствование и самовоспитание привычки к регулярным занятиям физическими упражнениями и спортом;
- овладение системой практических умений и навыков, обеспечивающих сохранение и укрепление здоровья, психическое благополучие, развитие и совершенствование психофизических способностей, качеств и свойств личности, самоопределение в физической культуре и спорте;
- приобретение личного опыта повышения двигательных и функциональных возможностей, обеспечение общей и профессионально-прикладной физической подготовленности к будущей профессии и быту;
- создание основы для творческого и методически обоснованного использования физкультурно-спортивной деятельности в целях последующих жизненных и профессиональных достижений.

Дисциплина «Физическая культура» обеспечивает формирование общекультурной компетенции бакалавра (специалиста) - способность использовать методы и средства физической культуры для обеспечения полноценной социальной и профессиональной деятельности (ОК-8).

Текущая аттестация обучающихся осуществляется на основе балльно-рейтинговой оценки.

Оцениваемыми компонентами в освоении дисциплины «Физическая культура» базовой части ООП являются:

посещение учебных занятий; выполнение заданий по самостоятельной работе; тестирование в программе Moodle.

Форма итогового контроля: зачет.

«Экономика» (Б1.Б.24)

В структуре ООП бакалавриата направления 01.03.03 дисциплина относится к базовой части. Эта дисциплина обязательна для изучения. Время изучения — 1-й семестр 3-го года обучения бакалавриата. Общая трудоёмкость дисциплины составляет 3 зачётных единицы, 108 часов, из которых 54 составляет контактная работа обучающегося с преподавателем, 54 часа - самостоятельная работа обучающегося. Форма промежуточной аттестации — зачёт.

Курс предполагает выполнение пяти письменных контрольных работ и работы студентов на практических занятиях.

Дисциплина «Экономика» в соответствии с требованиями ФГОС ВО направлена на формирование следующих компетенций на базовом уровне:

способность использовать основы экономических знаний в различных сферах жизнедеятельности (ОК-3).

При подготовке бакалавров дисциплина «Экономика» знакомит студентов с эволюцией базовых экономических категорий и понятий, законов, начиная с Аристотеля и до современного периода в российской и зарубежной экономике: цена, стоимость, рента, заработная плата, издержки производства, нормальная прибыль и сверхприбыль, налоговые и неналоговые доходы, предприятие, отрасль, акционерный капитал, владельцы бизнеса, бухгалтерский баланс, собственный и привлеченный капитал, внеоборотные и оборотные активы и др. Особое внимание уделяется актуальнейшему направлению текущей экономической политики РФ – импортозамещению: базовым положениям протекционистской политики в Англии и Франции на первом этапе появления экономической науки «меркантилизм», а также их современной реализации за рубежом – в США (экономическая программа Д.Трампа), аграрный протекционизм в ЕС, эволюция социально-экономической модели «от форсированного импортозамещения к экспортоориентированной экономике» в Индии (фармацевтика) и др. Подробно изучаются и анализируются труды русского протекционизма - И.Т. Посошкова, М.В. Ломоносова и Д.И. Менделеева. В ходе практических занятий центральное место занимает вид экономической деятельности «Обрабатывающие производства» и занятые в нем производители (крупные и средние заводы и фабрики, мелкая промышленность). В рамках выполнения индивидуального задания студенты учатся работать с общероссийским классификатором видов экономической деятельности (ОКВЭД), данными Федерального агентства государственной статистики (Росстат), рейтинга ведущих российских компаний РБК-500, «Перечня организаций, оказывающих существенное влияние на отрасли промышленности и торговли» Министерства промышленности торговли (Минпромторга) РФ, базы данных таможенной статистики Федеральной таможенной службы России.

«Политология» (Б1.Б.25)

Общая трудоемкость программы составляет 2 зачетных единицы (72 часа).

Эта дисциплина входит в базовую часть основной образовательной программы.

Дисциплина «Политология» в соответствии с требованиями ФГОС ВО направлена на формирование следующих компетенций на базовом уровне:

- Способность к коммуникации в устной и письменной формах на русском языке для решения задач межличностного и межкультурного взаимодействия (ОК 5)
- Способность работать в коллективе, толерантно воспринимая социальные, этнические, конфессиональные и культурные различия (ОК 6)

Освоив данную учебную дисциплину, обучающийся должен

знать: нормы, правила и способы осуществления коммуникации в устной и письменной форме на русском языке для решения задач в типовых ситуациях межличностного и межкультурного взаимодействия.

уметь: логически верно и грамотно строить устную и письменную речь на русском и иностранном языках для решения задач в типовых ситуациях межличностного и межкультурного взаимодействия; пользоваться основной справочной литературой, толковыми и нормативными словарями русского и иностранного языка; основными сайтами поддержки грамотности в сети «Интернет».

владеть: навыками осуществления коммуникации в устной и письменной форме на русском языке для решения задач в типовых ситуациях межличностного и межкультурного взаимодействия.

В процессе освоения дисциплины используются следующие образовательные технологии, способы и методы формирования компетенций: лекционно-семинарская система, дистанционная работа в ЭУК.

Контроль знаний, умений и навыков обучающихся осуществляется в следующих формах:

- текущий;
- промежуточный.

К формам текущего контроля относятся: контроль усвоения учебного материала на практических занятиях, взаимооценивание обучающихся в ходе дебатов.

Промежуточная аттестация обучающихся осуществляется в форме устного зачёта.

«Правоведение» (Б1.Б.26)

Направление подготовки 01.03.03 «Механика и математическое моделирование» **Квалификация (степень) выпускника:** Бакалавр

- **1. Цель изучения дисциплины «Правоведение»** формирование основ правового сознания и правовой культуры в процессе знакомства студентов с необходимым минимумом правовых знаний, пробуждения интереса к праву, привития элементарных навыков и умений в реализации норм права в конкретных ситуациях, воспитание законопослушного гражданина.
- **2.Место** дисциплины в структуре ООП ВО: относится к базовой части ООП, является обязательной для изучения.
- **3.** Компетенция обучающегося, формируемая в результате освоения дисциплины: ОК-4 (Способность использовать основы правовых знаний для применения в различных сферах жизнедеятельности).
 - 4. В результате освоения учебной дисциплины обучающийся должен:

знать: понятие государства, его функции, механизм и формы; виды судопроизводства, правила применения права, правила разрешения конфликтов правовыми способами, специфику основных юридических профессий, структуру системы

права, понятие правоотношения, правонарушения, юридической ответственности.

уметь: использовать полученные нормативно-правовые знания в реализации норм права в конкретных ситуациях.

5. Основное содержание дисциплины (тематический план) -

- Тема 1. Общие положения о государстве.
- Тема 2. Общие положения о праве.
- Тема 3. Основы конституционного права.
- Тема 4. Основы гражданского права.
- Тема 5. Основы семейного права.
- Тема 6. Основы трудового права.
- Тема 7. Основы административного права.
- Тема 8. Основы уголовного права.
- 6. Виды учебной работы лекции, самостоятельная работа.
- **7. Трудоемкость.** Общая трудоемкость дисциплины составляет 2 зачетные единицы (72 часа), из которых 18 часов составляет контактная работа (18 часов лекции), 54 часа самостоятельная работа обучающегося.
 - 8. Форма аттестации зачёт в 8 семестре.

«Библиотековедение» (Б1.Б.27)

Дисциплина «Библиотековедение» является компонентом базовой части Блока 1 учебного плана подготовки студентов по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете учебным центром Научной библиотекой ТГУ.

1. Цель освоения дисциплины

Целью освоения дисциплины (модуля) «Библиотековедение» является формирование информационной культуры студентов механико-математического факультета, усвоение ими знаний и умений рационального поиска, отбора, учета, анализа, обработки и использования научной и учебной информации для учебных и исследовательских задач, адаптировать к самостоятельной работе в университете.

2. Место дисциплины в структуре ООП бакалавриата.

Дисциплина «Библиотековедение» относится к базовой части Блока 1. Для освоения дисциплины «Библиотековедение» необходимы знания, полученные при изучении школьных дисциплин, в частности, дисциплины «Информатика». Знания, полученные при изучении «Библиотековедения», используются при подготовке к семинарам, в самостоятельной работе, а также при выполнении учебных и выпускных квалификационных работ бакалавров и магистров.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины Формируемые компетенции:

ОПК-1: способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности.

В результате освоения дисциплины обучающийся должен:

Знать: основные понятия и требования к информационной культуре специалиста;

основные информационно–поисковые, коммуникационные технологи, современные сервисы предоставления и обработки информации, роль Научной библиотеки ТГУ в информационной поддержке учебной и исследовательской работы, справочно-поисковый аппарат библиотеки (систему каталогов, библиографических ресурсов).

Уметь: проводить поиск документов в каталогах НБ ТГУ, выбирать информационный ресурс в соответствии с поставленными целями и задачами учебной и исследовательской деятельности; грамотно оформлять результаты работы.

Владеть: стандартными методами поиска информации в библиографических и полнотекстовых информационно-поисковых системах; грамотно оформить курсовую, дипломную работу (структура титульной страницы, оформление ссылок и сносок, библиографический список и т.д.).

4. Содержание дисциплины

Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа.

4.1. Наименования разделов дисциплины (модуля)

- Тема 1. Научная библиотека в системе классического университета;
- Тема 2. Электронный каталог Научной библиотеки ТГУ: алгоритм поиска информации, формирование поискового запроса;
- Тема 3. Карточные каталоги НБ ТГУ (Имидж каталог) : особенности организации, алгоритм поиска информации;
 - Тема 4. Электронные библиотечные системы. Система справочной литературы
- Тема 5. Правила оформления списка литературы и ссылок в учебных квалификационных работах

4.2. Виды учебной работы и формы аттестации

1) 1семестр: практические занятия - 10 часов, самостоятельная работа - 62 часа. Форма промежуточной аттестации – зачет.

«Отраслевая библиография» (Б1.Б.28)

Дисциплина «Библиотековедение» является компонентом базовой части Блока 1 учебного плана подготовки студентов по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете учебным центром Научной библиотекой ТГУ.

1. Цель освоения дисциплины - формирование представления об основных информационно-библиографических и полнотекстовых ресурсах в России и за рубежом; формирование компетенций анализа, сравнения, синтеза, системного мышления и др.в области информационных ресурсов; формирование практических знаний и навыков в области работы с информационно-библиографическими, полнотекстовыми и справочными системами, готовность к самостоятельной работе..

2. Место дисциплины в структуре ООП бакалавриата.

Дисциплина «Отраслевая библиография» относится к базовой части профессионального цикла. Для освоения дисциплины «Отраслевая библиография» необходимы знания, полученные при изучении школьных дисциплин, в частности, дисциплины «Информатика». Знания, полученные при изучении «Отраслевой библиографии», используются при подготовке к семинарам, в самостоятельной работе, а также при проведении исследовательской работы, выполнении учебных и выпускных квалификационных работ.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Формируемые компетенции: **ОПК-1** способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности.

ОПК-3 способность к самостоятельной научно-исследовательской работе

В результате освоения дисциплины обучающийся должен:

Знать: основные понятия и требования к информационной культуре специалиста; основные информационно—поисковые, коммуникационные технологи, современные сервисы предоставления и обработки информации, систему и особенности информационных ресурсов по математике; требования и правила оформления учебных и исследовательских работ.

Уметь: выбирать библиографические и полнотекстовые ресурсы, обеспечивающие

исследовательские и учебные задачи, отличать их характерные особенности; формулировать поисковый запрос, анализировать, оценивать и организовывать результаты поиска; грамотно оформлять результаты работы

Владемь: стандартными методами поиска информации в библиографических и полнотекстовых информационно-поисковых системах; грамотно оформить курсовую, дипломную работу (структура титульной страницы, оформление ссылок и сносок, библиографический список и т.д.).

4. Содержание дисциплины

Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа, из которых: практические занятия -10 часов, самостоятельная работа – 62 часа.

4.1. Наименования разделов дисциплины (модуля)

- 1. Система научной литературы по математике. Документированные информационные ресурсы.
- 2. Информационно-библиографическое обеспечение математической науки. Методика и тактика поиска научной литературы по теме учебно-исследовательской работы.
 - 3. Электронные информационные ресурсы: отечественные и зарубежные.
- 4. Правила оформления списка литературы и ссылок в учебных квалификационных и исследовательских работах.

4.2. Виды учебной работы и формы аттестации

Дисциплина проводится в 6 семестре, форма промежуточной аттестации – зачет.

Перечень рекомендаций, представленных для организации самостоятельной работы студентов, позволяет сформировать у студентов не только технические навыки использования информационных технологий, но и аналитический навык осмысления этих умения в контексте современной социокультурной ситуации, формирования основ самостоятельной работы и самообразования

Разработанные контрольные задания способствуют адекватной оценке сформированности навыков, в необходимых случаях приведены сопроводительные рекомендации.

В приложении к программе «Фонд оценочных средств для изучения дисциплины» сформулированы требования к промежуточной аттестации, дан список контрольных заданий.

«Введение в специальность» (Б1.Б.29)

Дисциплина «Введение в специальность» является компонентом базовой части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой теоретической механики.

Дисциплина нацелена на формирование общекультурных, общепрофессиональных и профессиональных компетенций выпускника:

- способность к самоорганизации и к самообразованию (ОК-7);
- способность к самостоятельной научно-исследовательской работе (ОПК-3);
- способность публично представлять собственные и известные научные результаты (ПК-5).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов понимания выбранной специальности.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: *практические занятия*, *самостоятельная работа студента*.

Программой дисциплины предусмотрены следующие виды контроля:

• зачет, который предусматривает ответы на устные вопросы на основе пройденного

материала.

Общая трудоемкость освоения дисциплины составляет 2 зачетные единицы, 72 часа, из которых 36 часов составляет контактная работа обучающегося с преподавателем и 36 часов составляет самостоятельная работа обучающегося.

«Концепция современного естествознания» (Б1.Б.30)

Дисциплина «Концепция современного естествознания» содержится в Блоке 1 базовой части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой физической и вычислительной механики.

Дисциплина нацелена на формирование профессиональных компетенций выпускника:

– способностью математически корректно ставить естественнонаучные задачи, знание постановок классических задач математики и механики (ПК-2).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний в области: некоторые вопросы термодинамики атмосферы; лучистый теплообмен в атмосфере; общие принципы динамики атмосферы; газовый состав атмосферы; термодинамические процессы сухом воздухе, В термодинамические процессы BO влажном воздухе; система уравнений гидротермодинамики для турбулентной атмосферы; динамика свободной атмосферы. Поверхности раздела в атмосфере; основы общей циркуляции атмосферы и некоторые вопросы энергетики атмосферы.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости в форме научного доклада (тема выступления индивидуально выбирается в соответствии с тематикой ВКР каждого студента);
 - промежуточный контроль в форме зачета в 6 семестре.

Общая трудоемкость освоения дисциплины составляет 2 зачетные единицы, 72 часа, из которых 34 часа составляет контактная работа обучающегося с преподавателем (34 часа – занятия лекционного типа), 38 часов составляет самостоятельная работа.

«Механика сплошных сред» (Б1.В.ОД.1)

Дисциплина «Механика сплошных сред» является компонентом вариативной части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой физической и вычислительной механики.

Дисциплина нацелена на формирование общепрофессиональных и профессиональных компетенций выпускника:

- готовностью использовать фундаментальные знания в области теоретической и механики прикладной механики, сплошной математического среды, комплексного функционального анализа, алгебры, аналитической геометрии, И дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности (ОПК-2);
- способностью к определению общих форм и закономерностей в области механики деформируемых твердых и текучих сред (ПК-1);

- способность самостоятельно формулировать физико-математические модели в области механики сплошных сред, уметь самостоятельно использовать алгоритмы и методы механики сплошных сред для решения поставленных задач (ПК-2);
- способностью строго доказать утверждение, сформулировать результат, увидеть следствия полученного результата (ПК-3).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний о методах моделирования движения сплошных сред, теории напряженно-деформированного состояния, теории определяющих соотношениях и законов сохранения массы, количества движения и энергии. В курсе рассматриваются:

- 1. основы тензорного исчисления,
- 2. теория напряженно-деформируемого состояния,
- 3. законы сохранения массы, количества движения и энергии,
- 4. основы теории определяющих соотношений,
- 5. основы механики жидкости и газа,

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости в форме научного доклада (тема выступления индивидуально выбирается в соответствии с тематикой ВКР каждого студента);
- промежуточный контроль в форме экзамена в 4 семестре, зачета в 5 семестре и экзамена в 6 семестре.

Общая трудоемкость освоения дисциплины составляет 13 зачетных единиц, 468 часов, из которых 208 часов составляет контактная работа обучающегося с преподавателем (занятия лекционного типа и практические занятия), 260 часов составляет самостоятельная работа обучающегося.

«Теоретическая механика» (Б1.В.ОД.2)

Дисциплина «Теоретическая механика» является компонентом вариативной части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой теоретической механики.

Дисциплина нацелена на формирование общепрофессиональных и профессиональных компетенций выпускника:

- готовность использовать фундаментальные знания в области теоретической и прикладной механики, механики сплошной среды, математического анализа, комплексного и функционального анализа, алгебры, геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности (ОПК-2);
- способность к определению общих форм и закономерностей отдельной предметной области (ПК-1);
- способность математически корректно ставить естественнонаучные задачи, знание классических постановок математики и механики (ПК-2);
- способность строго доказать утверждение, сформулировать результат, увидеть следствие полученного результата (ПК-3).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у

студентов теоретических знаний о таких разделах теоретической механики как: кинематика материальной точки, кинематика абсолютно твердого тела, динамика свободного движения материальной точки и механической системы, элементы небесной механики, аналитическая механика, аналитическая статика, вариационные принципы механики, канонические преобразования.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости в форме контрольных работ в течение семестров;
- промежуточный контроль в форме экзамена в 3семетре, зачета в 4 семестре и экзамена в 5 семестре, а так же выполнение курсовых работ в 5 и 6 семестрах;
- итоговый контроль проходит в форме экзамена в конце 6 семестра обучения.

Общая трудоемкость освоения дисциплины составляет 16 зачетных единиц, 576 часов, из которых 262 часа составляет контактная работа обучающегося с преподавателем (140 часов — занятия лекционного типа, 122 часа — практические занятия), 314 часов составляет самостоятельная работа обучающегося.

«Теория случайных процессов» (Б1.В.ОД.3)

1. Цель освоения дисциплины.

Целью освоения дисциплины «Теория случайных процессов» является фундаментальная подготовка и формирование прочных теоретических знаний и практических навыков по использованию методов теории случайных процессов для решения конкретных научных и практических задач.

2. Место дисциплины в структуре ООП бакалавриата

Относится к базовой части ООП, обязательна для изучения. Для изучения курса необходимо освоить знания, умения и навыки, формируемые при изучении дисциплин «Математический анализ», «Аналитическая геометрия», «Алгебра», «Компьютерные науки», «Функциональный анализ», «Теория вероятностей и математическая статистика».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины Формируемые компетенции:

— готовностью использовать фундаментальные знания в области теоретической и прикладной механики, механики сплошной среды, математического анализа, комплексного и функционального анализа, алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности — ОПК-2

В результате освоения дисциплины обучающийся должен:

Знать определения и свойства основных объектов изучения теории случайных процессов, а также формулировки наиболее важных утверждений, методы их доказательств, возможные сферы приложений.

Уметь решать задачи вычислительного и теоретического характера в области теории случайных процессов, устанавливать взаимосвязи между вводимыми понятиям, доказывать как известные утверждения, так и родственные им новые.

Владеть разнообразным математическим аппаратом, подбирая сочетания различных методов для описания и анализа стохастических моделей.

4. Содержание дисциплины

Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа, из которых 36 часов составляет контактная работа обучающегося с преподавателем.

4.1 Наименования разделов дисциплины

- Случайные функции и вероятностные процессы.
- Стохастический интеграл.
- 4.2. Виды учебной работы и формы аттестации

Лекции – 18 часов.

Практические занятия –18 часов.

Самостоятельная работа –36 часов.

Форма промежуточной аттестации – зачет.

«Вариационное исчисление и методы оптимизации» (Б1.В.ОД.4)

1. Цель освоения дисциплины

Целью освоения дисциплины (модуля) «Вариационное исчисление и методы оптимизации» » является овладение основными методами теории экстремальных задач, получение знаний об основных понятиях и методах современного курса вариационное исчисление и методы оптимизации для приложения этих методов в различных разделах математики, механики и физики и их использования в процессе дальнейшего обучения, при прохождении учебных практик, написании учебных и исследовательских курсовых работ. Для изучения данной дисциплины требуется знание элементарной математики в объеме школьной программы, а также разделов высшей математики, математического анализа: линейной алгебры, дифференциальных уравнений.

Знания, полученные при изучении этой дисциплины, используются в последующих разделах математики и механики и в процессе дальнейшего обучения при прохождении учебных практик, написании учебных и исследовательских курсовых работ.

2. Место дисциплины в структуре ООП

Дисциплина «Вариационное исчисление и методы оптимизации» входит в вариативную часть Блока 1 учебного плана подготовки бакалавров по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой теории функций.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины:

готовностью использовать фундаментальные знания в области теоретической и прикладной механики, механики сплошной среды, математического анализа, комплексного и функционального анализа, алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности (ОПК-2).

В результате освоения дисциплины обучающийся должен:

Знать: Элементы функционального анализа и дифференциального исчисления. Элементы выпуклого анализа. Методы и теорию решения экстремальных задач в области механики и методы оптимизации.

Уметь: решать примеры по всем предусмотренным программой разделам; применять методы для решения экстремальных задач и задач оптимизации.

Владеть: численными методами и алгоритмами решения экстремальных задач, овладение важнейшими конструкциями вариационного исчисления и методами оптимизации.

4. Содержание дисциплины

4.1. Основные разделы

- 1. Введение.
- 2. Необходимые и достаточные условия экстремума в основной задаче вариационного

исчисления.

- 3. Необходимые условия экстремума в более общих задачах вариационного исчисления.
 - 4. Теория Гамильтона-Якоби.
 - 5. Вариационные задачи на условный экстремум.
 - 6. Элементы математической теории оптимального управления.
 - 7. Прямые методы в вариационных задачах.

4.2. Виды учебной работы и формы аттестации

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа.

Виды учебной работы:

Лекции – 36 часов.

Практические занятия – 36 часов.

Самостоятельная работа – 72 часа.

Отчетность – экзамен в 7 семестре.

«Математика. Адаптивный курс» (Б1.В.ОД.5)

Дисциплина «Математика. Адаптивный курс» представляет собой дисциплину вариативной части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой теории функций.

Дисциплина нацелена на формирование общепрофессиональных и профессиональных компетенций выпускника:

- Способностью к определению общих форм и закономерностей отдельной предметной области (ПК-1).
- Способность строго доказать утверждение, сформировать результат, увидеть следствие полученного результата (ПК-3).

Дисциплина нацелена на углубление знаний и усовершенствование навыков решения задач, связанных с исследованием свойств элементарных функций, в частности с исследованием свойств тригонометрических и обратных тригонометрических функций. Дисциплина формирует необходимые знания и умения для овладения таких курсов, как математический анализ, теоретическая механика, топология.

Содержание дисциплины:

- Элементарные и неэлементарные функцию Графики.
- Прямая, гипербола, окружность.
- Элементарные свойства функций: множество значений, монотонность, четность.
- Тригонометрические функции. Графики.
- Преобразование тригонометрических выражений.
- Обратные тригонометрические функции.
- Периодические функции. Способы нахождения наименьшего периода.
- Полярная система координат. Некоторые замечательные кривые.

Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа.

Виды учебной работы:

Лекции – 34 часа.

Самостоятельная работа – 38 часов.

Форма аттестации – зачет.

Программой дисциплины предусмотрены следующие виды контроля:

- Текущий контроль успеваемости в виде проверки выполнения индивидуальных заданий по содержанию дисциплины;
 - Зачет в 1 семестре.

«Численные методы» (Б1.В.ОД.6)

1. Цель освоения дисциплины

Целью освоения дисциплины «Численные методы» является подготовка специалистамеханика к эффективному использованию численных методов в профессиональной деятельности при решении научно-практических задач.

2. Место дисциплины в структуре ООП бакалавриата

Дисциплина является важной составляющей вариативной части ООП. Для ее изучения требуется знание разделов: «Математического анализа», «Функционального анализа», «Дифференциальных уравнений», «Компьютерных наук». Кроме того, обучаемый должен уметь алгоритмически мыслить и составлять сложные в вычислительном плане компьютерные программы.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Формируемые компетенции.

Профессиональные компетенции:

-готовность использовать фундаментальные знания в области теоретической и прикладной механики, механики сплошной среды, математического анализа, комплексного и функционального анализа, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности (ОПК-2);

-способность находить, анализировать, реализовывать программно и использовать на практике математические алгоритмы, в том числе с применением современных вычислительных систем (ОПК - 4).

В результате освоения дисциплины обучающийся должен:

Знать:

теоретические основы численных методов решения задач математической физики **Уметь:**

Ставить начальные и краевые задачи для обыкновенных дифференциальных уравнений (ОДУ) и уравнений в частных производных, выбирать или строить явные и неявные численные методы решения задач математической физики, применять эти методы к решению прикладных задач механики сплошной среды.

Владеть:

навыками реализации численных методов на ПЭВМ и кластерных системах, исследования вопросов устойчивости, погрешности аппроксимации и сходимости используемых численных методов.

4. Содержание дисциплины

Общая трудоемкость дисциплины составляет 8 зачетных единиц, 288 часов.

4.1. Наименование разделов дисциплины (модуля)

- 1) Введение.
- 2) Интерполирование и приближение функций.
- 3) Численное интегрирование.
- 4) Численные методы алгебры.
- 5) Численные методы решения нелинейных уравнений.
- 6) Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений (ОДУ) и систем.

- 7) Численные методы решения краевых задач для ОДУ второго порядка.
- 8) Численные методы решения краевых задач для дифференциальных уравнений с частными производными.
- 9) Численные методы решения интегральных уравнений.

4.2. Виды учебной работы и формы аттестации

Лекции – 86 часов, практические занятия – 68 часов, самостоятельная работа – 134 часа. Форма аттестации – зачет (в 5 и 6 семестре), экзамен (в 7 семестре).

«Гидромеханика» (Б1.В.ДВ.1)

Дисциплина «Гидромеханика» является курсом по выбору студента вариативной части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой физической и вычислительной механики.

Дисциплина нацелена на формирование профессиональных компетенций выпускника:

- способностью к определению общих форм и закономерностей отдельной предметной области (ПК-1);
- способностью математически корректно ставить естественнонаучные задачи, знание постановок классических задач математики и механики (ПК-2);
- способностью строго доказывать утверждение, сформулировать результат, увидеть следствия полученного результата (ПК-3).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний в области: плоско параллельное движение идеальной жидкости; вихревые движения идеальной жидкости; течение вязкой жидкости; теория пограничного слоя для несжимаемой вязкой жидкости; турбулентное движение вязкой несжимаемой жидкости; решения уравнений движения вязкой жидкости и некоторые течения в трубах

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости в форме научного доклада (тема выступления индивидуально выбирается в соответствии с тематикой ВКР каждого студента);
 - промежуточный контроль в форме экзамена в 6 семестре.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа, из которых 68 часов составляет контактная работа обучающегося с преподавателем (68 часов – занятия лекционного типа), 76 часов составляет самостоятельная работа.

«Технологии программирования» (Б1.В.ДВ.1)

Дисциплина «Технологии программирования» относится к курсам по выбору студента вариативной части блока дисциплин для подготовки студентов по направлению 01.03.03 Механика и математическое моделирование. Дисциплина реализуется на механико-математическом факультете кафедрой вычислительной математики и компьютерного моделирования.

Дисциплина нацелена на формирование общепрофессиональных компетенций выпускника: способностью находить, анализировать, реализовывать программно и использовать на практике математические алгоритмы, в том числе с применением

современных вычислительных систем (ОПК-4).

В результате освоения дисциплины обучающийся должен:

Знать: технологию MPI параллельного программирования для многопроцессорных систем с распределенной оперативной памятью; парадигму событийно-управляемого программирования; концепцию объектно-ориентированного программирования.

Уметь: - создавать параллельные программы для многопроцессорной вычислительной техники на алгоритмическом языке C/C++ с помощью технологии MPI; создавать интерфейсы программ с использованием компонентов библиотеки визуальных компонент среды Lazarus; использовать полученные знания в своей научно-исследовательской и практической работе.

Владеть: навыками работы на многопроцессорной вычислительной технике и навыками визуального программирования в среде Lazarus;

Дисциплина включает в себя следующие разделы:

- Классификация и архитектуры многопроцессорных вычислительных систем.
- Основные понятия и базовые функции технологии параллельного программирования MPI.
 - Функции двухточечного обмена МРІ.
 - Функции коллективного обмена МРІ.
 - Объектно-ориентированное программирование.
 - Среда визуального программирования Lazarus;
 - Библиотека визуальных компонент среды Lazarus.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: *лекции*, *самостоятельная работа студента*.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль в форме отчетов по выполнению индивидуальных заданий,
- итоговый контроль в форме зачета в 6 семестре.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа, из которых 68 часов составляет контактная работа обучающегося с преподавателем (68 часов — занятия лекционного типа), 76 часов составляет самостоятельная работа обучающегося и контроль.

«Моделирование и прогноз катастроф» (Б1.В.ДВ.2)

Дисциплина «Моделирование и прогноз катастроф» является курсом по выбору студента вариативной части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой физической и вычислительной механики.

Дисциплина нацелена на формирование общепрофессиональных и профессиональных компетенций выпускника:

- способность математически корректно ставить естественнонаучные задачи, знание постановок классических задач математики и механики (ПК-2);
- готовность использовать основы теории эксперимента в механике, понимание роли эксперимента в математическом моделировании процессов и явлений реального мира (ПК-4).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у

студентов теоретических знаний о понятиях и методах теории катастроф, а также основных понятиях механики сплошной среды, физической и химической кинетики, математического и физического моделирования, которые используются в теории катастроф. Кроме того рассматриваются вопросы связанные с понятиями детерминированных, имитационных и смешанных математических моделей катастроф и дана информация о роли экспериментальных и теоретических методов механики сплошных реагирующих сред.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: *лекции*, *самостоятельная работа студента*.

Программой дисциплины предусмотрены следующие виды контроля:

• промежуточный контроль в форме зачета в 6 семестре.

Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы, 108 часов, из которых 34 часа составляет контактная работа обучающегося с преподавателем (34 часа — занятия лекционного типа) 74 часа составляет самостоятельная работа обучающегося.

«Современные вычислительные технологии» (Б1.В.ДВ.2)

Дисциплина «Современные вычислительные технологии» является курсом по выбору студента вариативной части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой теоретической механики.

Дисциплина нацелена на формирование следующей профессиональной компетенции выпускника:

способность определять общие формы и закономерности отдельной предметной области (ПК-1).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний и практических навыков по построению дискретных аналогов уравнений в частных производных, описывающих процессы теплопроводности и динамики жидкости и созданию вычислительных технологий для их решения.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: *лекции, самостоятельная работа студента*.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости в форме проверки результатов расчётов, полученных с помощью компьютерных программ, написанных студентами;
- промежуточный контроль в форме зачета в 6 семестре.

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов, из которых 34 часа составляет контактная работа обучающегося с преподавателем (34 часа – занятия лекционного типа) 74 часа составляет самостоятельная работа обучающегося.

«Разностные схемы» (Б.1.В.ДВ.3)

Дисциплина «Разностные схемы» является курсом по выбору студента вариативной части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой вычислительной математики и компьютерного моделирования.

1. Цель освоения дисциплины

Целью освоения дисциплины (модуля) «Разностные схемы» является освоение следующих разделов теории разностных схем: разностные схемы для задачи Коши,

разностные методы решения стационарных краевых для уравнения второго порядка разностные методы решения краевых для дифференциальных уравнений в частных производных, экономичные схемы решения многомерных задач математической физики.

2. Место дисциплины в структуре ООП бакалавриата

Для изучения данной дисциплины требуется знание разделов:

«Математического анализа», «Комплексного и функционального анализа», «Алгебры», «Аналитической геометрии», «Дифференциальных уравнений», «Дискретной математики» и «Математической логики».

Знания, полученные при изучении этой дисциплины, используются в следующих дисциплинах профессионального цикла: «Численные методы», «Методы параллельных вычислений», а также для написания выпускных бакалаврских и магистерских выпускных работ.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины Формируемые компетенции.

Профессиональные компетенции:

- способность к определению общих форм и закономерностей отдельной предметной области (ПК - 1).

В результате освоения дисциплины обучающийся должен:

знать:

- понятие разностной производной I и II порядка;
- основные определения «Разностных схем»: погрешность аппроксимации, устойчивость и сходимость;
- метод неопределенных коэффициентов построения разностных схем с заданным шаблоном;
- Метод Эйлера и его модификации разностного решения задачи Коши для обыкновенных дифференциальных уравнений;

Необходимый признак устойчивости.

- Метод прогонки для численного решения краевых задач для ОДУ второго порядка.
- Явные и неявные численные методы разностного решения задачи Коши и краевых задач для дифференциальных уравнений в частных производных,

Необходимый признак устойчивости фон Неймана,

- Метод прогонки для численного решения краевых задач для дифференциальных уравнений в частных производных параболического типа..

уметь:

- получить оценку порядка погрешности аппроксимации дифференциальной задачи разностной;
 - -приводить разностную схему к канонической форме;
- исследовать устойчивость разностной схемы по начальным условиям через ограниченность норм степеней оператора перехода;
- получить оценку порядка погрешности аппроксимации дифференциальной задачи разностной в норме соответствующего пространства;
 - -уметь строить Г и П формы для разностной схемы ;
- исследовать устойчивость разностной схемы по начальным условиям и по правой части.
- показать сходимость решения разностной задачи к соответствующей дифференциальной;
- программировать на языке высокого уровня численные методы и строить графики полученных результатов на ПЭВМ.

владеть:

- определениями и терминологией разностных схем;
- технологиями построения разностных схем для решения конкретных задач из

различных областей математики и ее приложений;

- навыками практической оценки погрешности аппроксимации, устойчивости, сходимости и точности расчетов, полученных в ходе решения прикладных задач, описываемых ОДУ и системами ОДУ

4. Содержание дисциплины

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа.

4.1. Наименования разделов дисциплины (модуля)

- 1) Введение в предмет.
- 2) Разностные схемы для ОДУ.
- 3) Каноническая форма записи разностной схемы.
- 4) Краевая задача для уравнения второго порядка.
- 5) Разностные схемы для уравнений в частных производных параболического типа (на примере уравнения теплопроводности).
 - 6) Разностные схемы для уравнений в частных производных гиперболического типа.
 - 7) Операторно-разностные схемы.
- 8) Экономичные разностные схемы решения многомерных задач математической физики.

4.2. Виды учебной работы и формы аттестации

7 семестр: лекции - 72 часа, самостоятельная работа - 36 часов, контроль за успеваемостью - 36 часов. Форма промежуточной аттестации - экзамен.

«Теория упругости и пластичности» (Б1.В.ДВ.3)

Дисциплина «Теория упругости и пластичности» относится к курсам по выбору студента для подготовки по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой физической и вычислительной механики.

Дисциплина нацелена на формирование профессиональных компетенций выпускника:

- способностью к определению общих форм и закономерностей отдельной предметной области (ПК-1).
- готовностью использовать основы теории эксперимента в механике, понимание роли эксперимента в математическом моделировании процессов и явлений реального мира (ПК-4).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний об упругом и пластическом поведении материалов. В курсе рассматриваются:

теория напряженно-деформируемого состояния, уравнения равновесия упругой среды;

физические соотношения в теории упругости;

классические задачи теории упругости: изгиб пластины, кручение призматического стержня, действие сосредоточенной силы на поверхность;

основы теории пластичности, условия пластичности, упруго-пластическая деформация;

элементы механики разрушения;

вязкоупругие среды.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: *лекции*, *самостоятельная работа студента*.

Программой дисциплины предусмотрены следующие виды контроля:

• текущий контроль успеваемости в форме научного доклада;

• промежуточный контроль в форме экзамена в 7 семестре.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа, из которых 72 часа составляет контактная работа обучающегося с преподавателем (72 часа – занятия лекционного типа), 72 часа составляет самостоятельная работа обучающегося.

«Конвективный теплоперенос» (Б1.В.ДВ.4)

Дисциплина «Конвективный теплоперенос» является курсом по выбору студента вариативной части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой теоретической механики.

Дисциплина нацелена на формирование профессиональных компетенций выпускника:

способность к определению общих форм и закономерностей отдельной предметной области (ПК-1);

способность математически корректно ставить естественнонаучные задачи, знание классических постановок математики и механики (ПК-2);

способность строго доказать утверждение, сформулировать результат, увидеть следствие полученного результата (ПК-3).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов знаний о механизмах конвективного переноса энергии, основные отличия вынужденной конвекции от естественной, определяющие уравнения конвективного теплопереноса, приближение Буссинеска, приближение пограничного слоя, метод переменной подобия.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: *лекции*, *самостоятельная работа студента*.

Программой дисциплины предусмотрены следующие виды контроля:

• Аттестация по итогам освоения дисциплины проводится в форме зачета, который предусматривает ответы на билеты на основе теоретического материала.

Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы, 108 часов, из которых 36 часов составляет контактная работа обучающегося с преподавателем (36 часов — занятия лекционного типа), 72 часа составляет самостоятельная работа обучающегося.

«Численные методы механики сплошной среды» (Б1.В.ДВ.4)

Дисциплина «Численные методы механики сплошной среды» является курсом по выбору студента вариативной части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой физической и вычислительной механики.

Дисциплина нацелена на формирование профессиональных компетенций выпускника:

- способность к определению общих форм и закономерностей отдельной предметной области (ПК-1);
 - способность математически корректно ставить естественнонаучные задачи, знание

постановок классических задач математики и механики (ПК-2).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний в области: численное решение уравнений в частных производных первого и второго порядка; модельное уравнение конвективного переноса; модельные уравнения диссипации, конвекции, диффузии; околоравновесная кинетика

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости в форме научного доклада (тема выступления индивидуально выбирается в соответствии с тематикой ВКР каждого студента);
 - промежуточный контроль в форме зачета в 7 семестре.

Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы, 108 часов, из которых 36 часов составляет контактная работа обучающегося с преподавателем (36 часов – занятия лекционного типа), 72 часа составляет самостоятельная работа.

«Аэродинамика больших скоростей» (Б1.В.ДВ.5)

Дисциплина «Аэродинамика больших скоростей» является курсом по выбору студента вариативной части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой физической и вычислительной механики.

Дисциплина нацелена на формирование профессиональных компетенций выпускника:

- способностью к определению общих форм и закономерностей отдельной предметной области (ПК-1);
- способностью математически корректно ставить естественнонаучные задачи, знание постановок классических задач математики и механики (ПК-2);
- способностью строго доказывать утверждение, сформулировать результат, увидеть следствия полученного результата (ПК-3).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний в области: плоско параллельное движение идеальной жидкости; вихревые движения идеальной жидкости; течение вязкой жидкости; теория пограничного слоя для несжимаемой вязкой жидкости; турбулентное движение вязкой несжимаемой жидкости; решения уравнений движения вязкой жидкости и некоторые течения в трубах

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: лекции, самостоятельная работа студента.

Программой дисциплины предусмотрены следующие виды контроля:

- текущий контроль успеваемости в форме написания и защиты отчетов по лабораторным работам;
 - итоговый контроль в форме зачета.

Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы, 108 часов, из которых 72 часа составляет контактная работа обучающегося с преподавателем (72 часа – занятия лекционного типа), 36 часов составляет самостоятельная работа.

«Вариационный метод» (Б1.В.ДВ.5)

1.Цель освоения дисциплины

Цель освоения дисциплины (модуля) является освоение вариационного метода и его приложений к решению экстремальных задач.

2. Место дисциплины в структуре ООП бакалавриата

Для изучения курса необходимо освоить знания дисциплин и разделов:

- Математического анализа;
- Комплексного анализа:
- Дифференциальных уравнений;
- Функциональный анализ.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля)

- способностью к определению общих форм и закономерностей отдельной предметной области (ПК-1);
- способностью строго доказывать утверждение, сформулировать результат, увидеть следствия полученного результата (ПК-3).

4. Содержание дисциплины

Общая трудоемкость дисциплины (модуля) составляет 3 зачетные единицы (108 часов).

5. Наименования разделов дисциплины (модуля)

- Теорема Римана. Сходимости последовательностей и рядов голоморфных отображений.
- Дифференцируемый функционал. Непрерывный функционал.
- Теорема Голузина.
- Вариационная формула типа Шиффера-Голузина.
- Экстремальные задачи.

6. Виды учебной работы и формы аттестации

Лекции – 72 часов.

Самостоятельная работа – 36 часов.

Формы промежуточной аттестации – зачет.

«Математические модели механики реагирующих сред» (Б1.В.ДВ.6)

Дисциплина «Математические модели механики реагирующих сред» является курсом по выбору студента вариативной части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой физической и вычислительной механики.

Дисциплина нацелена на формирование профессиональных компетенций выпускника:

- способность к определению общих форм и закономерностей отдельной предметной области (ПК-1);
- готовностью использовать основы теории эксперимента в механике, понимание роли эксперимента в математическом моделировании процессов и явлений реального мира (ПК-2);
- способность строго доказать утверждение, сформулировать результат, увидеть следствие полученного результата (ПК-3).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у

студентов теоретических знаний о математическом моделировании течений и процессов тепломассопереноса при наличии химических превращений компонент.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: *лекции*, *самостоятельная работа студента*.

Программой дисциплины предусмотрены следующие виды контроля:

- итоговый контроль успеваемости в форме экзамена.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа, из которых 36 часов составляет контактная работа обучающегося с преподавателем (36 часов – занятия лекционного типа), 108 часов составляет самостоятельная работа обучающегося.

«Теория сопротивления и теплопередачи» (Б1.В ДВ.6)

Дисциплина «Теория сопротивления и теплопередачи» является курсом по выбору студента базовой части ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете кафедрой теоретической механики.

Дисциплина нацелена на формирование профессиональных компетенций выпускника:

- способность к определению общих форм и закономерностей отдельной предметной области (ПК-1);
- способность математически корректно ставить естественнонаучные задачи, знание классических постановок математики и механики (ПК-2);
- способность строго доказать утверждение, сформулировать результат, увидеть следствие полученного результата (ПК-3).

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов теоретических знаний об общих формах и закономерностях теории сопротивления и теплопередачи. Кроме того рассматриваются вопросы связанные с движением различных потоков.

Преподавание дисциплины предусматривает следующие формы организации учебного процесса: *лекции, самостоятельная работа студента*.

Программой дисциплины предусмотрены следующие виды контроля: Аттестация по итогам освоения дисциплины проводится в форме экзамена, который предусматривает ответы на билеты на основе теоретического материала.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа, из которых 36 часов составляет контактная работа обучающегося с преподавателем (36 часов — занятия лекционного типа), 108 часов составляет самостоятельная работа обучающегося.

Блок 2. Практики

«Учебно-вычислительная практика» (В.2.1)

1. Цель освоения дисциплины

Основной целью учебно-вычислительной практики является получение представления о методах приближенного решения задач вычислительной математики и математической физики. В результате изучения дисциплины обучающийся должен:

Знать основные методы приближенных вычислений.

Уметь использовать полученные знания в своей профессиональной деятельности и практической работе.

Владеть навыками реализации, отладки программ реализующих изученные численные методы.

2. Место дисциплины в структуре ООП

Учебно-вычислительная практика является обязательным компонентом Блока 2. Практики. Дисциплина реализуется на механико-математическом факультете кафедрой вычислительной математики и компьютерного моделирования. Для освоения дисциплины обучающимся необходимо:

Знать:

- базовые определения, термины и теоремы алгебры и математического анализа;
 Уметь:
- программировать;
- разрабатывать последовательные алгоритмы, реализующие изучаемые в рамках курса численные методы;

Владеть:

- навыками разработки и отладки последовательных программ;

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля)

Дисциплина нацелена на формирование общепрофессиональных и профессиональных компетенций выпускника:

ОПК-2: Готовностью использовать фундаментальные знания в области теоретической и прикладной механики, механики сплошной среды, математического анализа, комплексного и функционального анализа, алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности:

Знать:

- основные термины и определения теории погрешностей;
- численные методы приближенного решения систем нелинейных уравнений и систем линейных алгебраических уравнений;
 - алгоритмы вычисления собственных значений и собственных векторов матриц.
- ОПК-4: Способностью находить, анализировать, реализовывать программно и использовать на практике математические алгоритмы, в том числе с применением современных вычислительных систем:

Уметь:

- разрабатывать алгоритмы, реализующие изученные в рамках курса численные метолы.

Владеть

- навыками разработки и отладки программ, реализующих алгоритмы численного решения рассмотренных в курсе задач.
- ПК-1: Способностью к определению общих форм и закономерностей отдельной предметной области:

Уметь:

- правильно выбрать и применить изученные численные методы для решения конкретных практических и исследовательских задач;
 - осуществлять сбор, обработку, анализ и систематизацию научно- методической

информации по теме (заданию);

ПК-2: Способностью к определению общих форм и закономерностей отдельной предметной области:

Знать:

- основные методы приближенных вычислений и область их применения;
- ПК-3: Способностью к определению общих форм и закономерностей отдельной предметной области:

Знать:

- знать и уметь показать применимость численных методов для решения поставленной вычислительной залачи:
- ПК-4: Готовностью использовать основы теории эксперимента в механике, понимание роли эксперимента в математическом моделировании процессов и явлений реального мира:.

Уметь:

- структурировано излагать основные термины, определения и методы курса «методы приближенных вычислений».

4. Содержание дисциплины

Содержание дисциплины охватывает круг вопросов, связанных с формированием у студентов знаний о методах численного решения задач вычислительной математики.

4.1. Наименование разделов дисциплины

- Теория погрешностей;
- Решение алгебраических и трансцендентных уравнений;
- Решение систем нелинейных уравнений;
- Точные методы решения систем линейных алгебраических уравнений (СЛАУ);
- Итерационные методы решения систем линейных алгебраических уравнений;
- Вычисление собственных значений и собственных векторов матриц.

4.2. Виды учебной работы и формы аттестации

Преподавание дисциплины предусматривает следующие формы организации учебного процесса:

- практические занятия 94 часа;
- самостоятельная работа студента 50 часов.

Программой дисциплины предусмотрены следующие формы контроля и аттестации:

- текущий контроль успеваемости в форме выполнения и защиты лабораторных работ;
- промежуточный контроль в форме зачета (3 семестр) и зачета с оценкой (4 семестр).

«Преддипломная практика» (В.2.2)

«Преддипломная практика» является обязательным компонентом ООП по направлению 01.03.03 «Механика и математическое моделирование». Дисциплина реализуется на механико-математическом факультете.

Практика нацелена на формирование общепрофессиональных и профессиональных

компетенций выпускника:

- ОПК-1 способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности.
- ОПК-2 готовность использовать фундаментальные знания в области теоретической и прикладной механики, механики сплошной среды, математического анализа, комплексного и функционального анализа, алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности.
- ОПК-3 способность к самостоятельной научно-исследовательской работе.
- ПК-1 способность к определению общих форм и закономерностей отдельной предметной области.
- ПК-2 способность математически корректно ставить естественнонаучные задачи, знание постановок классических задач математики и механики.
- ПК-3 способность строго доказать утверждение, сформулировать результат, увидеть следствия полученного результата.
- ПК-4 готовность использовать основы теории эксперимента в механике, понимание роли эксперимента в математическом моделировании процессов и явлений реального мира.
- ПК-5 способность публично представлять собственные и известные научные результаты.

Преддипломная практика и последующая защита ВКР – завершающие этапы обучения студента в бакалавриате. В соответствии с графиком учебного процесса по специальности «Механика и математическое моделирование», в 8 семестре студенты проходят преддипломную практику. Учебно-методическое руководство и контроль за проведением практики студентов осуществляет выпускающая кафедра. Местом прохождения практики является механико-математический факультет ТГУ, в качестве руководителя практики выступает непосредственно сам руководитель ВКР студента.

Общая трудоемкость освоения дисциплины составляет 8 зачетных единиц, 288 часа составляет самостоятельная работа обучающегося. По итогам выступления по результатам преддипломной практики на заседании выпускающей кафедры выставляется зачет с оценкой.

Блок 3. Итоговая государственная аттестация

«Государственная итоговая аттестация» (Б.3.2)

Государственная итоговая аттестация по направлению 01.03.03 Механика и математическое моделирование относится к обязательной части ООП.

Целью «Государственной итоговой аттестации» является определение соответствия результатов освоения ООП требованиям ФГОС НИ ТГУ в части сформированности

общепрофессиональных компетенций (ОПК):

- ✓ способности решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности (ОПК-1);
- ✓ готовности использовать фундаментальные знания в области теоретической и прикладной механики, механики сплошной среды, математического анализа, комплексного и функционального анализа, алгебры, аналитической геометрии,

дифференциальной геометрии и топологии, дифференциальных уравнений, численных методов, теории вероятностей, математической статистики и случайных процессов в будущей профессиональной деятельности (ОПК-2);

- ✓ способностью к самостоятельной научно-исследовательской работе (ОПК-3);
- ✓ способностью находить, анализировать, реализовывать программно и использовать на практике математические алгоритмы, в том числе с применением современных вычислительных систем (ОПК-4).

профессиональных компетенций (ПК):

- ✓ способности к определению общих форм и закономерностей отдельной предметной области (ПК-1);
- ✓ способности математически корректно ставить естественнонаучные задачи, знание постановок классических задач математики (ПК-2);
- ✓ способности строго доказать утверждение, сформулировать результат, увидеть следствия полученного результата (ПК-3);
- ✓ готовности использовать основы теории эксперимента в механике, понимание роли эксперимента в математическом моделировании процессов и явлений реального мира (ПК-4);
- ✓ способности публично представлять собственные и известные научные результаты (ПК-5).

Программой Математика по направлению 01.03.03 Механика и математическое моделирование, профиль подготовки «Основы научно-исследовательской деятельности в области механики и математического моделирования» на механико-математическом факультете НИ ТГУ предусмотрена защита выпускной квалификационной работы.

Общая трудоемкость ГИА составляет 6 зачетные единицы, 216 часов, в 8-м семестре.